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1 Multiple Regression

In the past few weeks, we’ve studied models of the form

Yi = α+ β ·Xi + εi

where we are interested in explaining variation in our outcome Y with just one variable
X. If we remember, in this model, we estimated the above equation by finding (α̂, β̂) such
that

(α̂, β̂) = arg min
a,b

n∑
i=1

(Yi − (a+ b ·Xi)
2)

In this section, we consider a natural extension to this simple model in which we try
and explain the variance in Y using multiple regressors X1, X2, . . . etc. For exposition we
consider only using 2 explanatory variables, X1 and X2. We posit a relationship between
Y,X1 and X2 of the form:

Yi = α+ β1 ·X1,i + β2 ·X2,i + εi

We impose similar restriction on εi as in the single linear regression model, namely that
the εi terms are independent and identically normall distributed with mean 0 and constant
variance σ21 As before, we can estimate the parameters of this model using least squares:

(α̂, β̂1, β̂2) = arg min
a,b1,b2

n∑
i=1

(Yi − (a+ b1 ·X1,i + b2 ·X2,i)
2)

I think there is not much point in trying to derive and memorize the form of these estima-
tors. There is not intuition built by doing this and it’s better to focus on understanding
what’s going on with these regressions.

1The variance is estimated as before where σ̂2 = 1
N−K

∑
i=1(Yi − Ŷi)

2. Here K is the number of
regressors.
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In any case, we are interested in doing similar things with this model as we were with the
single linear regression model. For example, we may be interested in conducting hypothesis
tests. These are done in a similar fashion as in single linear regression where the t-statistic
is constructed:

t∗ =
Estimator − Null Hypothesis

Standard Error of Estimator

Again, with more than one regressor, we have a complicated formula for the standard
errors. You should just take these off of the stata output.

1.1 Interaction Terms

Sometimes we are interested in anaylzing how two explanatory variables interact to explain
the variance in Y . For example, suppose we are interested in analyzing the effect of
insurance policies and age on the probability of being in an accident. We may think that
this affect is different for people with different ages. For example, we may think that older
people are more likely to respond to higher deductibles than younger people. Instead of
specifying a regression

Accidents Per Year = α+ β1 · Age + β2 · Deductible + εi

that would imply that all age groups respond the same to a higher deductible, we may
want to add an interaction term and specify a regression of the form

Accidents Per Year = α+ β1 · Age + β2 · Deductible + β3 · Age * Deductible + εi

This interaction term attached to β3 allows for the effect of raising a deductible on the
likelihood of being in an accident to vary based on age. This is easily seen once we take
derivatives:

∂Accidents Per Year

∂Deductible
= β2 + β3 · Age

2 Problems

1. Suppose we estimate the parameters of a multiple linear regression model:

Yi = α+ β1X1,i + β2X2,i + εi

How would we construct a two sided test for the null hypothesis, H0 : β1 + β2 = 0?

2. Consider the following estimated regression model:

ˆEarnings = α̂+ 2.745 · Age + 3.833 · Years of Education − 0.25 · Age * Education
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(a) Interpret the parameters of this model? What does the interaction tell us about
the relationship between Earnings, Age, and Education?

(b) Use standard errors to construct a standard error for the estimated forecast at
a particular value of Age and Education.

3. Suppose that from a sample of 63 observations, the least squares estimates and the
corresponding estiated covariance matrix are given byb1b2

b3

 =

 2
3
−1

 ; ˆcov(b) =

 3 −1 1
−2 4 0
1 0 3


Test each of the following hypothesis and state the conclusion

(a) β2 = 0

(b) β1 + 2β2 = 5

(c) β1 − β2 + β3 = 4
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